Phys 410

 Fall 2015, Prof. Anlage September, 2015Problem 1. Both the Coulomb and gravitational forces lead to potential energies of the form $U\left(\vec{r}_{1}-\vec{r}_{2}\right)=\gamma /\left|\vec{r}_{1}-\vec{r}_{2}\right|$, where $\gamma=k q_{1} q_{2}$ for the Coulomb force and $\gamma=-G m_{1} m_{2}$ for gravity, and \vec{r}_{1}, and \vec{r}_{2} are the positions of the two particles. Show in detail that $-\nabla_{1} U\left(\vec{r}_{1}-\vec{r}_{2}\right)$ is the force on particle 1 and $-\nabla_{2} U\left(\vec{r}_{1}-\vec{r}_{2}\right)$ is that on particle 2 .

Hint: Define $\vec{r}=\vec{r}_{1}-\vec{r}_{2}$ which is a vector that points from particle 2 to particle 1. The PE is $U=\frac{\gamma}{r}$ and the forces can be written as $\vec{F}_{12}=\frac{\gamma}{r^{2}} \hat{r}$ and $\vec{F}_{21}=-\frac{\gamma}{r^{2}} \hat{r}$.

Problem 2

A mass on the end of a spring is oscillating with angular frequency ω. At $t=0$ its position is $x_{0}>0$ and I give it a kick so that it moves back toward the origin and executes simple harmonic motion with amplitude $2 x_{0}$. Find the position as a function of time in the form $x(t)=$ $A \cos (\omega t-\delta)$.

